

GaN on Si HEMT Power Transistor 500 W, 1200 - 1400 MHz

Advance - Rev. 1

Features

- GaN on Si Transistor Technology
- · Internally Input Matched
- Common-Source Configuration
- Broadband Class AB Operation
- Thermally enhanced package
- RoHS Compliant

Applications

· L-Band pulsed radar

Description

The MAGX-101214-500L0x is a gold-metalized matched Gallium Nitride (GaN) on Silicon (Si) RF power transistor optimized for pulsed L-Band radar applications. The MAGX-101214-500L0x is constructed using a thermally enhanced, flanged ceramic package which provides excellent thermal performance. High breakdown voltages allow for reliable and stable operation under compared with older semiconductor technologies.

MAGX-101214-500L00

MAGX-101214-500L0S

RF Performance, P_{out} = 500 W Freq. = 1200-1400 MHz, V_{DD} = 50 V, I_{DQ} = 125 mA, Pulse = 300 μ s, Duty = 10 %, T_{C} = 25 °C

Freq. (MHz)	Р _{оит} (W)	Gain (dB)	Eff. (%)	Droop (dB)	P2dB (W)
1200	500	17.3	70	0.1	558
1250	500	16.7	68	0.1	516
1300	500	16.8	71	0.1	525
1350	500	16.75	69	0.1	545
1400	500	16	71	0.1	525

1

Advance Information

MAGX-101214-500L0x

GaN on Si HEMT Power Transistor 500 W, 1200 - 1400 MHz

Advance - Rev. 1

RF Performance , P_{out} = 500 W Freq. = 1200-1400 MHz, V_{DD} = 50 V, I_{DQ} = 100 mA, Pulse = 2ms, Duty = 20 %, T_{C} = 25 °C

Freq. (MHz)	Р _{оит} (W)	Gain (dB)	Eff. (%)	Droop (dB)	P2dB (W)
1200	500	17.08	73.7	0.1	560.6
1250	500	16.29	71.7	0.1	509.6
1300	500	16.26	73.7	0.1	509.0
1350	500	16.43	71.3	0.1	530.7
1400	500	15.85	72.3	0.1	519.7

GaN on Si HEMT Power Transistor 500 W, 1200 - 1400 MHz

Advance - Rev. 1

Electrical Specifications, Standard Operating Conditions: Freq. = 1200 - 1400 MHz, V_{DD} = 50 V, I_{DQ} = 125mA, Pulse = 300 μ s, Duty = 10 %, T_{C} = 25 °

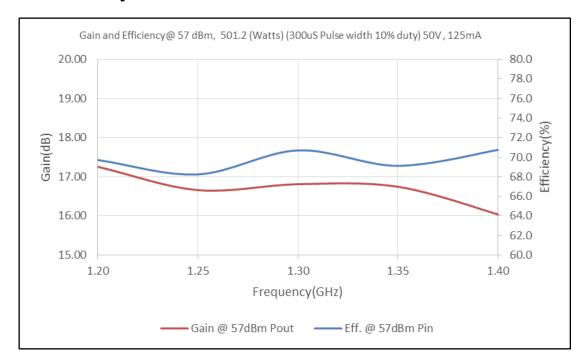
Parameter	Test Conditions	Symbol	Тур.	Units		
RF Functional Tests						
Peak Input Power		P _{OUT}	500	W		
Power Gain	V 50 V 1 405 V A	G _P	16	dB		
Drain Efficiency	V_{DD} = 50 V, I_{DQ} = 125mA Pulse Width = 300 µs, Duty Cycle = 10% P_{OUT} = 500 W	η_{D}	65	%		
Pulse Droop		Droop	0.1	dB		
Load Mismatch Stability		VSWR-S	5:1	-		
Load Mismatch Tolerance		VSWR-T	10:1	-		

Electrical Characteristics: $T_A = 25$ °C

Parameter	Test Conditions	Symbol	Тур.	Units		
DC Characteristics						
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 175 V	I _{DS}	40	mA		
Gate Threshold Voltage	$V_{DS} = 50V, I_{D} = 10 \text{ mA}$	V _{GS (TH)}	-1.9	V		
Forward Transconductance	V _{DS} = 5 V, I _D = 21 mA	G _M	TBD	S		
Dynamic Characteristics						
Input Capacitance	Not applicable - Input matched	C _{ISS}	N/A	pF		
Output Capacitance	V _{DS} = 50 V, V _{GS} = -8 V,	Coss	TBD	pF		
Reverse Transfer Capacitance	Freq. = 1 MHz	C _{RSS}	TBD	pF		

Thermal Characteristics

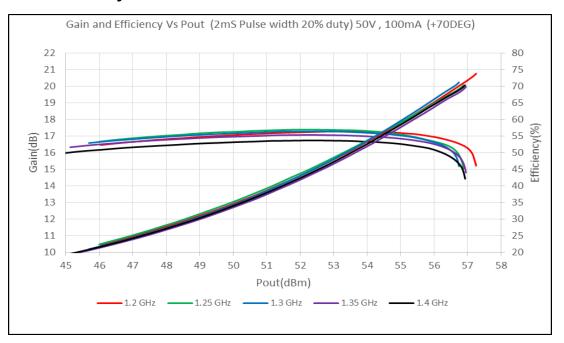

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	T_C = 85 °C, V_{DD} = 50 V, I_{DQ} = mA, P_{OUT} = 500 W Pulse Width = 2mSec, Duty Cycle = 20%	Θ _{JC}	0.33	°C/W

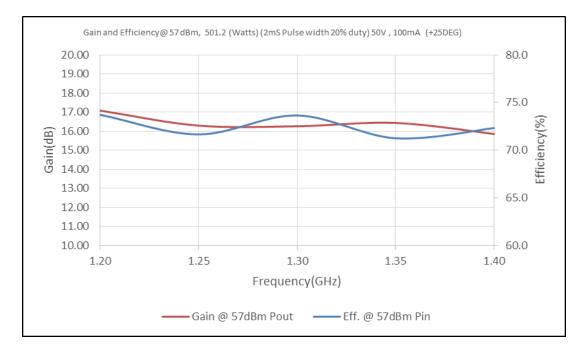

GaN on Si HEMT Power Transistor 500 W, 1200 - 1400 MHz

Advance - Rev. 1

RF Gain & Efficiency Vs Pout

Gain and efficiency at 500W

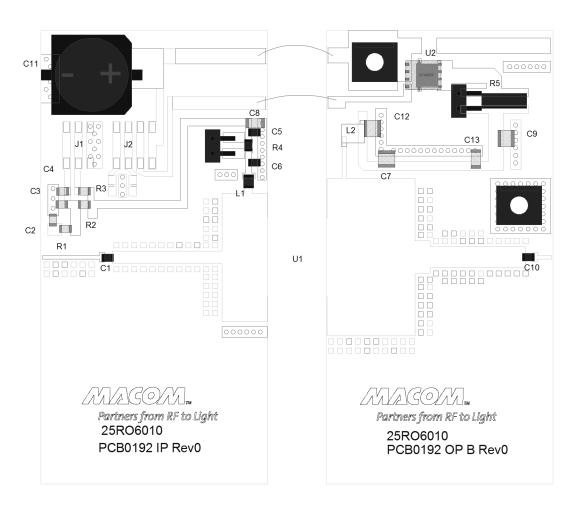



GaN on Si HEMT Power Transistor 500 W, 1200 - 1400 MHz

Advance - Rev. 1

RF Gain & Efficiency Vs Pout

Gain and efficiency at 500W



GaN on Si HEMT Power Transistor 500 W, 1200 - 1400 MHz

Advance - Rev. 1

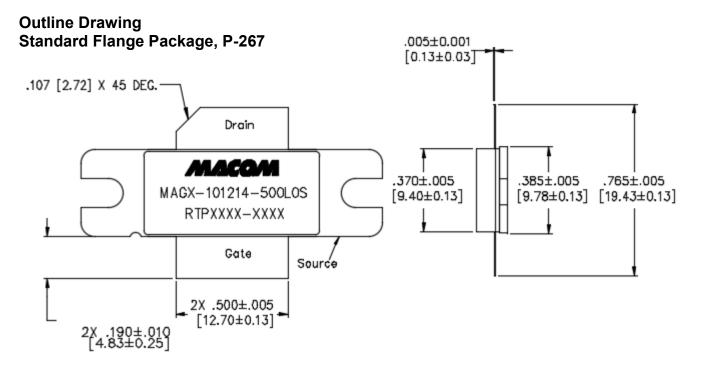
Demo circuit Board

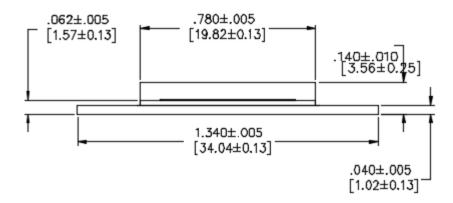
Advance Information

MAGX-101214-500L0x

GaN on Si HEMT Power Transistor 500 W, 1200 - 1400 MHz

Advance - Rev. 1


Bill of materials


Reference	Qty.	Part Type	Value	Manufacturer	Part Number
PCB	1	Rogers 6010LM, 0.025in. Thk.	-	Avanti Circuits	PCB0192 Rev. 00
Base Plate	1	1.5x3"	-	Jones Machine	BP-0003-BIP3015VARIBR20
Base Plate	1	1.5x3"	-	Jones Machine	BP-0004-BIP3015VARIBR20
U1	1	GaN PA, MAGX-100914-500L0S	-	MACOM	MAGX-100914-500L00
U2	1	P-Channel MOSFET, 80-V	-	MACOM	Si7469DP
C1	1	Capacitor, 0805	36 pF	Passive Plus	0805N360GW251X
C2, C4	2	Capacitor, 0805	1000 pF	Murata	GRM219R72A102JA01D
C3	1	Capacitor, 0805	100 pF	Passive Plus	0805N101BW251T
C5, C6	2	Capacitor, 0805	20 pF	Passive Plus	0805N200BW251X
C7	1	Capacitor, 1111, 500V	43pF	Passive Plus	1111N430CW501XT
C8, C13	12	Capacitor, 1206, 100V	1uF	Murata	GRM31CR72A105K
C9	1	Capacitor	10 uF	TDK	
C10	1	Capacitor, 0805	56 pF	Passive Plus	0805N560GW251X
C11	1	Capacitor, Electrolytic, 80V	150uF	Panasonic	EEV-FK1K151Q
C12	1	Capacitor, 1111, 500V	1.2pF	Passive Plus	1111N1R2BW501XT
R1	1	Resistor, 0805	100 Ω	VIKING	CR-05FL7-100R
R2	1	Resistor, 0805	10 Ω	VIKING	CR-05FL7-10R
R3	1	Resistor, 0805	365 Ω	VIKING	CR-05FL7-365R
R4	1	Resistor, 0805	5.1 Ω	VIKING	CR-05FL7-5R1R
R5	1	Resistor, 7520	0.005 Ω	Susumu	RL7520WT-R005-F
L1	1	Inductor, 0805HQ	48 nH	Coilcraft	0805HQ-48NX_L_
L2	1	Inductor	2.5 nH	Coilcraft	A01T
J1	1	Top Mount Card Edge Conn., 3 Slot	-	AVX Interconnect	0091590003551906
J2	1	Top Mount Card Edge Conn., 4 Slot	-	AVX Interconnect	009159004551906

GaN on Si HEMT Power Transistor 500 W, 1200 - 1400 MHz

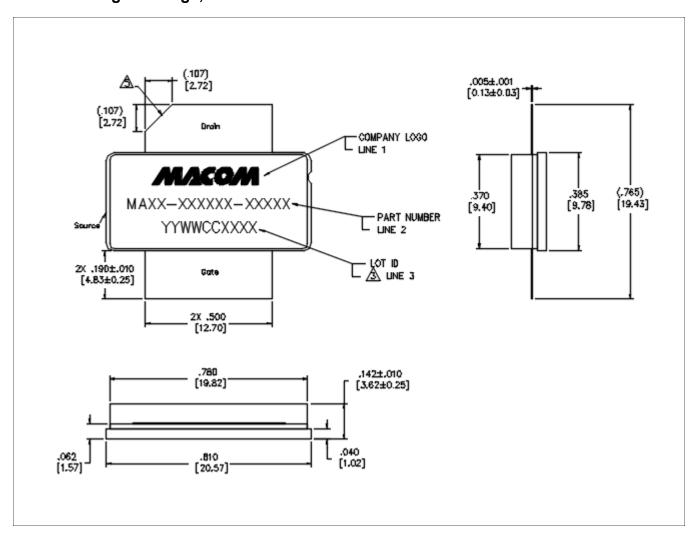
Advance - Rev. 1

CORRECT DEVICE SEQUENCING

TURNING THE DEVICE ON

- 1. Set V_{GS} to the pinch-off (V_P) , typically -4V
- 2. Turn on V_{DS} to nominal voltage (50V)
- 3. Increase V_{GS} until the I_{DS} current is reached
- 4. Apply RF power to desired level

TURNING THE DEVICE OFF


- 1. Turn the RF power off
- 2. Decrease V_{GS} down to V_{P}
- 3. Decrease V_{DS} down to 0V
- 4. Turn off V_{GS}

GaN on Si HEMT Power Transistor 500 W, 1200 - 1400 MHz

Advance - Rev. 1

Outline Drawing Earless Flange Package, P-285

GaN on Si HEMT Power Transistor 500 W. 1200 - 1400 MHz

Advance - Rev. 1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.